Default
Question
Find the principal value of $cot^{-1} \left( -\dfrac{1}{\sqrt{3}} \right) $
Solution
The correct answer is $\dfrac{2\pi}{3}$
Explanation
$cot^{-1} \left( -\dfrac{1}{\sqrt{3}} \right) $
= $ π - cot^{-1} \left( \dfrac{1}{\sqrt{3}} \right) $
= $ π - cot^{-1} \left( cot \dfrac{π}{3} \right) $
= $ π - \dfrac{π}{3}$
= $\dfrac{2 π}{3}$
e30239cf-750f-11ed-94f3-5405dbb1cb03